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● Language model conditioned on an image
● Create a powerful cross-modal alignment[1]

Image Captioning

2[1] Michael Tschannen, Manoj Kumar, Andreas Steiner, Xiaohua Zhai, Neil Houlsby, Lucas Beyer. “Image Captioners Are Scalable Vision Learners Too”. 2023

  



Distinctive Image Captioning

● Datasets captions only describe most salient objects, common to many 
images

● Higher word-matching metrics with words common across different 
images, not specific ones
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Distinctive Image Captioning

● Datasets captions only describe most salient objects, common to many 
images

● Higher word-matching metrics with words common across different 
images, not specific ones

● Fine-grained alignment to describe this image and only this one
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A couple of dogs standing on a porch



Cross-modal retriever rewards

● Reinforcement learning to optimize cross-modal similarity of the 
generated caption and the target image
○  A description that can let the retriever identify the image

5a couple of dogs wearing a santa hat on a porch



Contrastive learning

● Dual encoder, each projecting a modality separately
○ Similarity using dot product of both representations
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Models From Natural Language Supervision”. 2021

  



Contrastive learning

● Dual encoder, each projecting a modality separately
○ Similarity using dot product of both representations

● Couple closer than any element in the batch
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Regularization

● Prevent the model from learning ill-formed solutions
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a close up of two brown and black dogs 
wearing a santa hat on a black and 
brown dog with a red hat on a backyard 
with a fence in the background



Regularization

● Prevent the model from learning ill-formed solutions
● Regularization term in the reward

○ KL divergence, CIDEr value, grammar network…
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wearing a santa hat on a black and 
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with a fence in the background



Experiments

● 3 different contributions to improve CLIP-based RL image captioning 
1. Discriminator regularization
2. RL objective on ground truth samples
3. Bidirectional contrastive reward
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Experiments

● 3 different contributions to improve CLIP-based RL image captioning 
1. Discriminator regularization
2. RL objective on ground truth samples
3. Bidirectional contrastive reward

● MS COCO dataset
● Trade-off:

○ Discriminativeness: recall@k using generated caption (fixed CLIP model) 
○ Writing quality: BLEU, ROUGE, CIDEr, METEOR and SPICE 
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Discriminator regularization
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● Use generated text discriminator scores as regularization
● Simple MLP using CLIP representations as input



Discriminator regularization

13

● Use generated text discriminator scores as regularization
● Simple MLP using CLIP representations as input

● Higher retrieval rate without degrading written quality



Weighted Teacher Forcing

● RL learns from high-scoring sequences
● Ground truths are (relatively) good solutions
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Weighted Teacher Forcing

● RL learns from high-scoring sequences
● Ground truths are (relatively) good solutions
● Learn to reproduce human-written sequence (TF) but focuses on highly 

descriptive ones
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(1) there is an adult bear that is walking in 
the forest

(2) picture of an exterior place that looks 
wonderful.



● Improve retrieval metrics using only ground truth, without degrading 
writing quality

● Better regularization objective to couple with traditional RL

Weighted Teacher Forcing
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● Subtract a baseline to the reward to reduce variance

Baseline rewards
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● Subtract a baseline to the reward to reduce variance

1. Use the model itself as a baseline[1]

Baseline rewards
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● Subtract a baseline to the reward to reduce variance

1. Use the model itself as a baseline[1]

2. Similarity with other (similar) images[2]

Baseline rewards

19
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Bidirectional Contrastive Reward

● Decoupled contrastive loss
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Bidirectional Contrastive Reward

● Decoupled contrastive loss
● Closest element in the batch as baseline
● Natively handle both cross-modal directions
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Bidirectional Contrastive Reward

● Decoupled contrastive loss
● Closest element in the batch as baseline
● Natively handle both cross-modal directions
● The caption is very descriptive of the image and this image only
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● Unidirectional image-to-text reward only yield significantly lower 
text-to-image retrieval results

● Both cross-modal directions are needed for a caption highly descriptive of 
this image and this image only

Bidirectional reward
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