

reciTAL.

SIRISA IMATAG

Generative Cooperative Networks for Natural Language Generation

Sylvain Lamprier, Thomas Scialom, Antoine Chaffin, Vincent Claveau, Ewa Kijak, Benjamin Piwowarski, Jacopo Staiano

Language GANs fall short

GANs are good for approximating continuous data distributions:

GANs for discrete data as text:

- No backpropagation from the discriminator to the generator :
 - **Reinforcement Learning** with Discriminator scores as Rewards
 - Noisy, Sparse and Moving Rewards
 - Existing language GANs are known to fall short (Caccia et al, 2020)

Cooperative Decoding

- → Use of the **discriminator** *D* **cooperatively with the generator** *p* for sampling texts
 - In Beam Search: DAS [Scialom et. al, 2020b], Discriminative EBM [Ranzato et al., 2019]
 - In MCTS: SelfGAN [Scialom et. al, 2021]
- → SelfGAN: Cooperative decoding can be useful for training via Expert Iteration

→ We show that sampling from $q(\tau) \propto p(\tau)D(\tau)$ can allow to ensure convergence (under usual assumptions and a **Reward-augmented Maximum Likelihood** process (RML) [Norouzi et al., 2016])

GAN vs RML-GAN

- 1) Sample M documents from generator p $y^i \sim p_{\theta}(y^i)$
- 2 Train the discriminator D_t
- (3) Train p with rewards from discriminator D on generated samples (policy gradient)

$$\theta \leftarrow \theta + \epsilon \frac{1}{M} \sum_{i=1}^{M} D_t(y^i) \nabla_\theta \log p_\theta(y^i)$$

GAN vs RML-GAN

- (1) Sample M documents from generator p $y^i \sim p_\theta(y^i)$
- 2 Train the discriminator D_t
- (3) Train p with rewards from discriminator D on generated samples (policy gradient)

$$\theta \leftarrow \theta + \epsilon \frac{1}{M} \sum_{i=1}^{M} D_t(y^i) \nabla_\theta \log p_\theta(y^i)$$

GAN vs RML-GAN

(1) Sample M documents from generator p $y^i \sim p_\theta(y^i)$

2 Train the discriminator D_t

(3) Train p with rewards from discriminator D on generated samples (policy gradient)

$$\theta \leftarrow \theta + \epsilon \frac{1}{M} \sum_{i=1}^{M} D_t(y^i) \nabla_{\theta} \log p_{\theta}(y^i)$$

- (1) Sample M documents from generator p $y^i \sim p_{\theta}(y^i)$
- **2** Train the discriminator D_t
- Train p with rewards from discriminator
 D on generated samples (policy gradient)

$$\theta \leftarrow \theta + \epsilon \frac{1}{M} \sum_{i=1}^{M} D_t(y^i) \nabla_{\theta} \log p_{\theta}(y^i)$$

- 1 Sample documents from generator *p*
- 2 Train the discriminator D
- (3) Generate M samples from \hat{q}

$$\begin{array}{l} y^{i} \sim \hat{q}(y^{i}) \\ \hline \textbf{4} \end{array} \text{ Train p using weighted importance sampling} \\ \theta \leftarrow \theta + \epsilon \frac{1}{\sum\limits_{i=1}^{M} w^{i}} \sum\limits_{i=1}^{M} w^{i} \nabla_{\theta} \log p_{\theta}(y^{i}) \hspace{1mm} \text{with:} \hspace{1mm} w^{i} = \frac{q(y^{i})}{\hat{q}(y^{i})} \end{array}$$

(1) Sample M documents from generator p $y^i \sim p_\theta(y^i)$

2 Train the discriminator D_t

(3) Train p with rewards from discriminator D on generated samples (policy gradient)

$$\theta \leftarrow \theta + \epsilon \frac{1}{M} \sum_{i=1}^{M} D_t(y^i) \nabla_\theta \log p_\theta(y^i)$$

1 Sample documents from generator *p*

 $u^i \sim \hat{a}(u^i)$

- 2 Train the discriminator D
- ${f 3}$ Generate M samples from $\hat q$

$$\theta \leftarrow \theta + \epsilon \frac{1}{\sum\limits_{i=1}^{M} w^i} \sum\limits_{i=1}^{M} w^i \nabla_{\theta} \log p_{\theta}(y^i)$$
 with: $w^i = \frac{q(y^i)}{\hat{q}(y^i)}$

 $\Rightarrow \text{With } \hat{q} = p_{\theta}, \text{ we have:} \quad \theta \leftarrow \theta + \epsilon \frac{1}{Z_t} \sum_{i=1}^M D_t(y^i) \nabla_{\theta} \log p_{\theta}(y^i), \text{ where } Z_t = \sum_{i=1}^M p_{\theta}(y^i) D_t(y^i)$

1 Sample M documents from generator p $y^i \sim p_{\theta}(y^i)$

2 Train the discriminator D_t

(3) Train p with rewards from discriminator D on generated samples (policy gradient)

$$\theta \leftarrow \theta + \epsilon \frac{1}{M} \sum_{i=1}^{M} D_t(y^i) \nabla_\theta \log p_\theta(y^i)$$

 $\Rightarrow \text{With } \hat{q} = p_{\theta}, \text{ we have:} \quad \theta \leftarrow \theta + \epsilon \frac{1}{Z_t} \sum_{i=1}^M D_t(y^i) \nabla_{\theta} \log p_{\theta}(y^i), \text{ where } Z_t = \sum_{i=1}^M p_{\theta}(y^i) D_t(y^i)$

- → No scheduler required
- → Sampling closer to q allows to still improve results (state-of-the-art) !
 - Use of Monte-Carlo Tree Search guided by $p_{\theta}(y)D(y)$

Thank you for your attention ! Please check the paper for more details

