
# PPL-MCTS: Constrained Textual Generation Through Discriminator-Guided MCTS Decoding





# 1. Constrained textual generation

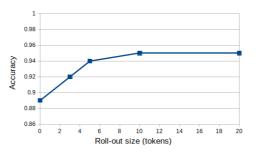
- Few options to control the generation besides the **prompt**
- Adding some **constraints** is useful to control various aspects (writing style, emotion/polarity, detoxification...)



#### Language models (LM) tuning

- Train and store one model for each constraint
- Very costly when even possible for very large LM (e.g. GPT-3)
- Class-conditional language models (CC-LMs) [1]
  - Add a control code before texts
  - Training/tuning for any new additional constraint

#### Discriminator-guided generation

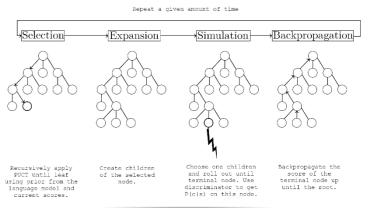

- Change the LM distribution based on scores from a discriminator
- Plug and Play Language Models (PPLM) [2]
  - Shift hidden states using discriminator's gradient
  - Require direct access to the LM (not compatible with GPT-3 API)
- Generative Discriminator Guided Sequence Generation (GeDi) [3]
  - Exploits CC-LMs as discriminators to lower the classification cost

# Texts following one constraint Training [JOY] I am happy [FEAR] I am scared ... Training I feel Language model Training I feel Discriminator

# 3. Results

- Two tasks: polarity 🕶 😡 and emotion 😥 😂 😭
- Two languages: 🔲 🎇
- Automatic metrics
  - **1. Accuracy**: samples belong to the target class
  - 2.Perplexity: samples are well written 🚣
- **3.Self-BLEU**: there is enough diversity across samples
- Human evaluation to support automatic metric results
- PPL-MCTS yields state-of-the-art results on both tasks and languages
- Rollout is very useful up to a given number of tokens

|                   | amazon_polarity |           |                    | emotion |                    |                    | CLS   |                     |                    |
|-------------------|-----------------|-----------|--------------------|---------|--------------------|--------------------|-------|---------------------|--------------------|
| Generation        | Acc.            | 5 - Self- | Oracle             | Acc.    | 5 - Self           | Oracle             | Acc.  | 5 - Self            | Oracle             |
| method            | 1               | BLEU ↓    | pplty ↓            | 1       | BLEU $\downarrow$  | pplty ↓            | 1     | $BLEU \downarrow$   | pplty $\downarrow$ |
| CC-LM - Classloss | 0.82            | 0.79      | $2.56^{*,\dagger}$ | 0.89*   | $0.65^{\dagger}$   | $3.72^{*,\dagger}$ | 0.89* | $0.04^{*,\uparrow}$ | 50.6               |
| CC-LM             | 0.91            | 0.71      | $3.21^{\dagger}$   | 0.52    | $0.13^{*,\dagger}$ | 11.1               | 0.66  | $0.06^{*,\dagger}$  | 31.5               |
| GeDi - Classloss  | 0.96*           | 0.6*      | 5.16               | 0.88*   | 0.68               | 5.57*              | 0.94* | 0.4                 | 7.99*              |
| GeDi              | 0.96*           | 0.6*      | 5.16               | 0.54    | $0.52^{\dagger}$   | $4.09^{*,\dagger}$ | 0.83* | $0.31^{\dagger}$    | 11.9               |
| PPLM              | 0.89            | 0.66      | 2.84 <sup>†</sup>  | 0.67    | 0.19 <sup>†</sup>  | 7.31               | 0.79  | 0.23 <sup>†</sup>   | 8.3                |
| PPL-MCTS          | 0.97*           | 0.63*     | 5.69               | 0.84*   | 0.37 <sup>†</sup>  | 4.82*,†            | 0.89* | 0.54                | 4.98*,†            |




### 2. PPL-MCTS

- Previous works lack of long-term vision
  - Meaning of words are context depend
- Short-term decisions to optimize a long-term result
  - Tree exploration similar to game setups

#### Monte Carlo Tree Search (MCTS)

- Iterative algorithm that finds solutions in a space **too large to be exhaustively searched**
- MCTS properties:
  - **1. Long-term vision**: scores the next token using finished sequences (rollout)
  - 2.Efficient: exploration of sub-optimal paths has an upper bound
  - **3. Modular**: outputs a solution according to the computational budget
  - 4.Plug and play: can be used with any LM and classifier without any tuning



## 4. Conclusion

- PPL-MCTS shows that depth search is helpful for constraint generation
- The extra cost of the classifier still limit the search in width
- · Avenues of research:
  - 1. Merge GeDi width and PPL-MCTS depth search
  - 2. Trade-off between accuracy and perplexity
  - 3. Adaptative rollout size
- Code available on Github



Antoine Chaffin IMATAG, IRISA, France Vincent Claveau CNRS, IRISA, France Ewa Kijak Univ. Rennes, IRISA, France

Lontacts antoine.chaffin@irisa.fr vincent.claveau@irisa.fr ewa.kijak@irisa.fr

#### References

[1] CTRL: A Conditional Transformer Language Model for Controllable Generation.
 Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, Richard Socher

[2] Plug and Play Language Models: A Simple Approach to Controlled Text Generation.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosinski, Rosanne Liu

[3] GeDi: Generative Discriminator Guided Sequence Generation.