# ModernBERT: redefines encoders, SOTA on retrieval and classification, with support for long-context & code, and record efficiency

# Smarter, Better, Faster, Longer: A Modern Bidirectional Encoder for Fast, Memory Efficient, and Long Context Finetuning and Inference

Benjamin Warner, Antoine Chaffin, Benjamin Clavié Orion Weller, Oskar Hallström, Said Taghadouini Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, Nathan Cooper Griffin Adams, Jeremy Howard, and Iacopo Poli

# Modern Decoder Training Recipe

Trained on 2 Trillion Total Tokens (including web documents, code, and scientific literature)

1.7T Tokens at 1024 context length

Midtraining on 300 Billion Tokens of upsampled higher quality data at 8K context length

**Infinite LR schedule** for easy continual pretraining **Modern Tokenizer** supporting code

**SOTA Across the Board...** 

**Beats DeBERTaV3 on GLUE**, first MLM model to ever do so, without any of its tradeoffs

**SOTA Retrieval Performance** across context lengths, in both single and multi vector settings

**Best-In-Class Code Performance** thanks to tokenizer and data mixes

|      |            | DPR  |      | ColBERT |      | NLU  | Code      |
|------|------------|------|------|---------|------|------|-----------|
|      | Model      | BEIR | MLDR | BEIR    | MLDR | GLUE | CSN SQA   |
| Base | BERT       | 38.9 | 32.2 | 49.0    | 28.1 | 84.7 | 41.2 59.5 |
|      | RoBERTa    | 37.7 | 32.8 | 48.7    | 28.2 | 86.4 | 44.3 59.6 |
|      | DeBERTaV3  | 20.2 | 13.4 | 47.1    | 21.9 | 88.1 | 17.5 18.6 |
|      | GTE-en-MLM | 41.4 | 44.4 | 48.2    | 69.3 | 85.6 | 44.9 71.4 |
|      | ModernBERT | 41.6 | 44.0 | 51.3    | 80.2 | 88.4 | 56.4 73.6 |
|      | BERT       | 38.9 | 31.7 | 49.5    | 28.5 | 85.2 | 41.6 60.8 |
| ge   | RoBERTa    | 41.4 | 36.1 | 49.8    | 28.8 | 88.9 | 47.3 68.1 |
| Lar  | DeBERTaV3  | 25.6 | 19.2 | 46.7    | 23.0 | 91.4 | 21.2 19.7 |
|      | GTE-en-MLM | 42.5 | 48.9 | 50.7    | 71.3 | 87.6 | 40.5 66.9 |
|      | ModernBERT | 44.0 | 48.6 | 52.4    | 80.4 | 90.4 | 59.5 83.9 |

# **Carefully Designed Architecture**

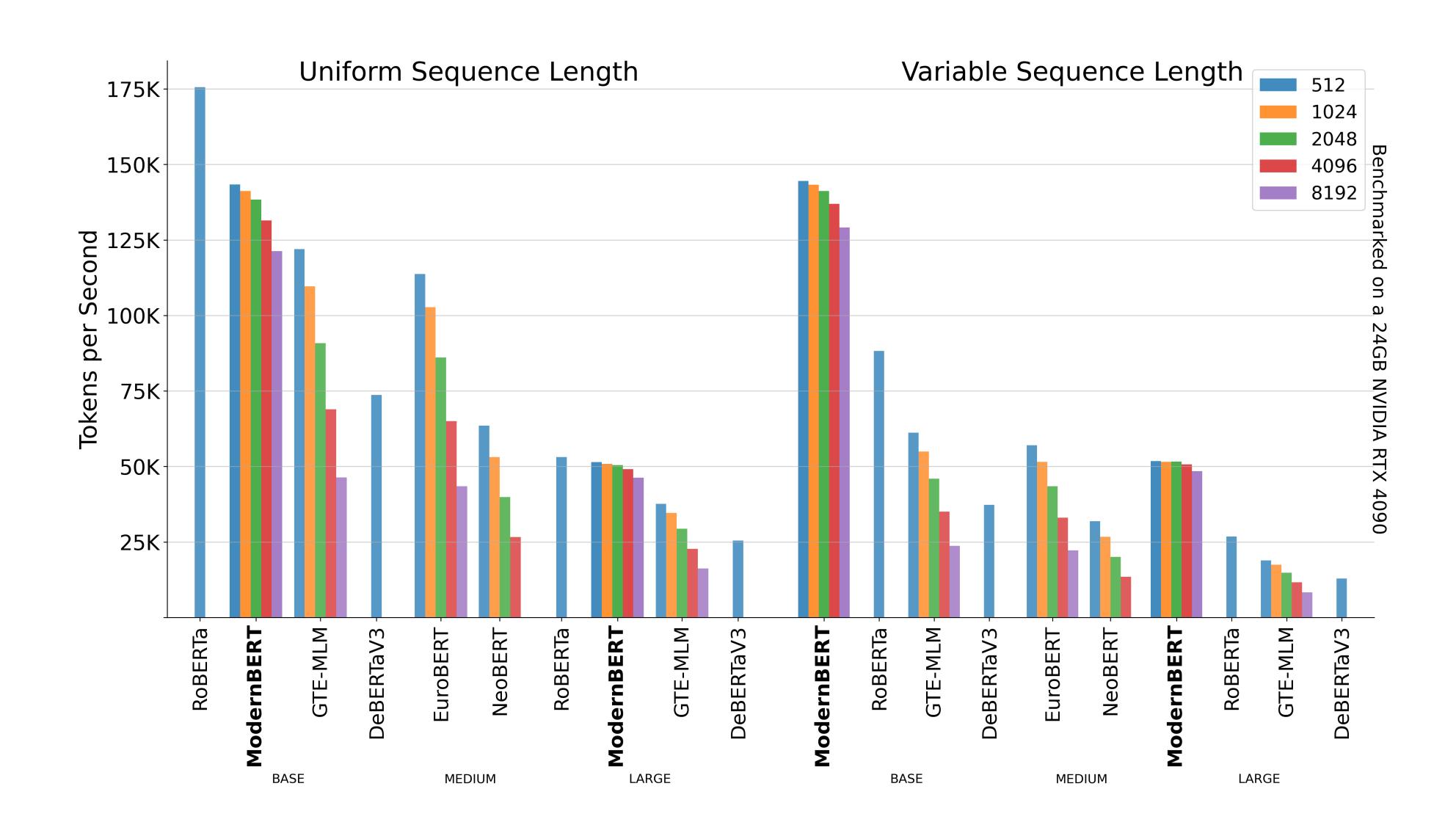
Alternating Global-Local Attention to efficiently and accurately process long sequences

Full Model Unpadding and Sequence Packing to not waste compute on padding tokens

Deep and Narrow Design, to balance between downstream performance and hardware efficiency

Hardware-Aware Architecture to maximize throughput on common GPUs

And, last but not least:


Flash Attention & OPyTorch.compile make the GPUs go brrr

## ...at Light Speed

Blazingly Fast on Short Fixed-Size Inputs, twice as much as DeBERTav3

Variable Sequences Lengths efficient processing thanks to unpadding

**Long-Context Class of Its Own:** hybrid attention scales to large inputs (over  $2 \times$  faster than other encoder models)





