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Language GANs fall short
GANs are good for approximating continuous data distributions… 

… but have hard time with discrete data (e.g., text): 

➢ No backpropagation from the discriminator to the generator : 
- Reinforcement Learning with Discriminator scores as Rewards 

- Noisy and Moving Rewards 

- Existing language GANs are known to fall short (Caccia et al, 2020)
- Cautious Sampling is a key to stabilize the process (Scialom et al., 2020a)

Cooperative Decoding

But unstable even at the optimum !   

➔ Use of the discriminator D cooperatively 
with the generator p for sampling texts

● In Beam Search: 
○ DAS (Scialom et. al, 2020b)
○ Discriminative EBM (Bakhtin et al., 2021)

● In MCTS: 
○ SelfGAN (Scialom et. al, 2021)  

➔ SelfGAN: Cooperative decoding at train time via Expert Iteration
● Denser Rewards
● More Realistic Samples   

State-of-the-art results on various NLG tasks ! 
Cooperative Decoding:

Generator + Discriminator

Generator & Discriminator Updates

Generative Cooperative Networks (GCN, this work)

➔ Our GCN considers  

●            is the generator at previous iteration

●       is a discriminator trained with samples generated from           

➔ Variance reduction via Cooperative Decoding with MCTS and Weighted Importance Sampling  

➔  Based on Reward-augmented Maximum Likelihood (RML) (Norouzi et al., 2016):
● considers a Boltzmann distribution                                  

                 with            a reward dependent function and       a temperature 

● updates the generator p via:   
        

⇒ Ensures asymptotic convergence 
under usual assumptions of GANs !⇒ Avoids Catastrophic Forgetting 

(e.g., SelfGAN)    

Discrete-GAN RML-GAN (this work)  GCN (this work) 

⇒ With                   , we have: 

Automatic Scheduling ! 

 

with 

● Uses directly the Generator p to produce training 
samples
○ Very unstable, sparse rewards
○ Very noisy discriminator at the mode of the distribution p 

(Scialom et al., 2020a) 

● Requires a scheduler to avoid divergence
But how to sample from q ?     

●        acts as a scheduler
● It increases along with agreements between the generator and the discriminator about best sequences

● GCN with                    obtains good and stable results without the need of a scheduler 
● But sampling closer to the target q allows to get better results !!

● The use of Nucleus Sampling (Holtzman et al., 2019) allows to improve results by avoiding sampling from the tail of 
the distribution p

● Monte-Carlo Tree Search allows to go further by circumventing the left-to-right curse of myopic approaches 

New State-of-the-art 
Results ! 

Guaranteed Convergence !!


